
www.manaraa.com

SSH { Secure Login Connections over the InternetTatu Yl�onen <ylo@ssh.fi>SSH Communications Security Ltd.Tekniikantie 12, FIN-02150 ESPOO, FinlandTel. (intl) +358-0-4354 3205 fax +358-0-4354 3206June 7, 1996AbstractSSH provides secure login, �le transfer, X11, andTCP/IP connections over an untrusted network. Ituses cryptographic authentication, automatic sessionencryption, and integrity protection for transferreddata. RSA is used for key exchange and authentica-tion, and symmetric algorithms (e.g., IDEA or three-key triple-DES) for encrypting transferred data.SSH is intended as a replacement for the existingrsh, rlogin, rcp, rdist, and telnet protocols. SSHis currently (March 1996) being used at thousandsof sites in at least 50 countries. Its users includetop universities, research laboratories, many majorcorporations, and numerous smaller companies andindividuals.The SSH protocol can also be used as a generictransport layer encryption mechanism, providingboth host authentication and user authentication, to-gether with privacy and integrity protection.1 IntroductionThe Internet has become the most economical meansfor communication between two remote sites. Its usesinclude communicating with clients, connecting re-mote o�ces, �le transfer, remote systems administra-tion, banking services, working at home, and manyothers.However, the Internet does not provide any protec-tion for the transmitted information, and can becomean information security nightmare for companies con-nected to it. Firewalls and access controls such asone-time passwords do not fully solve the problem,as it is easy to record and analyze any transmitteddata or to hijack an already established connectionand use it to attack machines inside the �rewall.The threats from the Internet include:� Network monitoring: it is easy to record pass-

words, �nancial data, private messages, or cor-porate secrets from the network.� Connection hijacking: it is possible to hijack aconnection without either party noticing it, in-sert new commands at the command prompt,and remove the output of those commands fromthe output sent to the user. The same mecha-nisms can, for example, be used to manipulateremote banking connections to make wire trans-fers with a di�erent sum and account than whatthe user thinks (and sees). Having the accountsprotected by one-time passwords does not help.� Routing spoo�ng: standard routing protocolsand commonly used router con�gurations per-mit anyone in the world to recon�gure routings.This can be used to bring connections into net-works through which they do not normally go,and where they can be hijacked.� DNS (domain name server spoo�ng): activenetwork-level attacks can be used to make nameservers return whatever data is bene�cial for fur-ther attacks. Veri�cation by reverse-mappingdoes not help. The same holds for practicallyall widely used network services.� Denial of service attacks: here the purpose is toprevent others from using a particular service.The simplest implementation of this attack is tooverload the target machine with requests; how-ever, more subtle forms are available, such as re-con�guring the routers so that packets no longergo to the machine, hijacking connections to themachine and returning erroneous results, etc.The current IP protocol does not in any way guar-antee any aspects of information security (e.g., au-thentication, privacy, data integrity). As higher levelprotocols are mostly based on the assumption thatthe lower level protocol can be trusted { and as this



www.manaraa.com

is not the case { the higher level protocols aren't anymore reliable. If security is needed, it must be en-tirely implemented on the application level.An acceptable solution must guarantee at the sametime authentication of both ends of the connection,secrecy of transmitted information, and integrity oftransmitted data. For example, if only authentica-tion and integrity (but no secrecy) is provided, theuser is likely to eventually type a password to an-other machine or service, which will then be shownin the clear.Strong encryption seems to be the only solution tonetwork security. Since several major governmentshave demonstrated growing interest in economic espi-onage (including, e.g., United States, Russia, France,and Japan), commercial systems are now faced withsome of the most skilled and resourceful opponents inthe world, and must be designed using the strongestpossible methods to be of any use. Increasing eco-nomic signi�cance will also lure interest from crim-inal organizations, which are certainly well enoughfunded to break e.g. DES-level encryption methodswithout much trouble [12].2 An Overview of SSH SecureRemote LoginSSH permits secure login connections and �le transferover the Internet or other untrusted networks. Cryp-tographic algorithms are used to authenticate bothends of the connection, to automatically encrypt alltransmitted data, and to protect the integrity of data.Values returned by services such as DNS or networkprotocols (e.g., TCP/IP [10]) are considered only ad-visory, and are validated using cryptography. SSHalso automatically and securely forwards X11 con-nections from the remote machine, and can be con-�gured to forward arbitrary TCP/IP ports. It canalso be used for secure �le transfer.3 The SSH ProtocolSSH uses a packet-based binary protocol that workson top of any transport that will pass a stream ofbinary data. Normally, TCP/IP is used as the trans-port, but the current implementation also permits us-ing an arbitrary proxy program to pass data to/fromthe server, and includes direct support for SOCKSand FWTK based �rewalls.The packet mechanism and related authentica-tion, key exchange, encryption, and integrity mech-anisms implement a transport layer security mech-

anism, which is then used to implement the remotelogin functionality. An attacker is limited to breakingthe connection.Every transmitted packet starts with randompadding, followed by (optionally compressed) packettype, packet data, and integrity protection data.The entire packet is encrypted using a suitable al-gorithm, such as IDEA-CFB [2, 9], 3DES-CBC [9], oran RC41 [9] equivalent algorithm. The packet typeand data �elds can be compressed with the gzip al-gorithm before encryption. Compression reduces theamount of transmitted data to about a third for typ-ical interactive sessions.Integrity protection is currently (March 1996) pro-vided by including CRC32 [1] of the packet underencryption. However, it is being replaced by HMAC-SHA; see Section 5. If tampering is detected, the er-ror is logged, the user is noti�ed, and the connectionis terminated.On the transport, each encrypted packet is pre-�xed by the length of the packet data, excludingpadding (the total length on the wire is the givenlength rounded up to a multiple of eight bytes in sucha way that the length of padding is 1-8 bytes).The SSH protocol works on top of the packet-levelprotocol, and proceeds in the following phases:1. The client opens a connection to the server.(Note that an attacker may cause the connectionto actually go to a di�erent machine.)2. The server sends its public RSA host key andanother public RSA key (\server key") thatchanges every hour. The client compares thereceived host key against its own database ofknown host keys (in future, it will validate thehost key using a public key infrastructure; how-ever, at present no such infrastructure exists).At present, SSH is not able to validate keys forhosts that it does not already know. It will nor-mally accept the key of an unknown host andstore it in its database for future reference (thismakes SSH usable in practice in most environ-ments). However, SSH can also be con�guredto refuse access to any hosts whose key is notknown.3. The client generates a 256 bit random numberusing a cryptographically strong random numbergenerator, and chooses an encryption algorithmfrom those supported by the server (normallyIDEA or three-key 3DES). The client encrypts1RC4 is a trademark of RSA Data Security, Inc.



www.manaraa.com

the random number (session key) with RSA us-ing both the host key and the server key, andsends the encrypted key to the server.The purpose of the host key is to bind the con-nection to the desired server host (only the servercan decrypt the encrypted session key). Theserver key is used to make decrypting recordedhistoric tra�c impossible after the server key hasbeen changed (usually every hour) in the eventthat the host key becomes compromised. Thehost key is normally a 1024 bit RSA key, andthe server key is 768 bits. Both keys are gen-erated using a cryptographically strong randomnumber generator.4. The server decrypts the RSA encryptions andrecovers the session key. Both parties start us-ing the session key (until this point, all tra�chas been unencrypted on the packet level). Theserver sends an encrypted con�rmation to theclient. Receipt of the con�rmation tells the clientthat the server was able to decrypt the key, andthus holds the proper private keys.At this point, the server machine has been au-thenticated, and transport-level encryption andintegrity protection are in use.5. The user is authenticated to the server. This canhappen in a number of ways; the dialog is drivenby the client which sends requests to the server.The �rst request always declares the user nameto log in as. The server responds to each requestwith either \success" (no further authenticationis needed) or \failure" (further authentication isrequired).Currently supported authentication methodsare:� Traditional password authentication. Thepassword is transmitted over the encryptedchannel, and thus cannot be seen by out-siders.� A combination of traditional .rhosts orhosts.equiv authentication and RSA-basedhost authentication. Host authenticationworks by the server generating a 256 bitchallenge, encrypting it with the client'spublic host key, and sending the encryptedchallenge to the client. The client decryptsthe challenge, and computes MD5 [7] of thechallenge and other information that bindsthe returned value to the particular ses-sion. The client then sends this value to the

server; the server makes the correspondingcomputations and compares the values.� Pure RSA authentication. The idea is thatpossession of a particular private RSA keyserves as authentication. The server has alist of accepted public keys. The client re-quests authentication by a particular key,and the server responds with a challengesimilar to that in RhostsRSA authentica-tion.� Support is also included e.g. for SecurityDynamics SecurID cards. Adding new au-thentication methods is easy.6. After authentication has been successful, apreparatory phase begins. In this phase, theclient sends requests that prepare for the ac-tual session. Such requests include allocation ofa pseudo-tty, X11 forwarding, TCP/IP forward-ing, etc. Adding new preparatory operations iseasy.After all other requests, the client sends a requestto start the shell or to execute a given command.This message causes both sides to enter the in-teractive session.7. During the interactive session, both sides are al-lowed to send packets asynchronously. The pack-ets may contain data, open requests for X11 con-nections, forwarded TCP/IP ports, or the agent,etc. Finally at some point the client usuallysends an EOF message. When the user's shellor command exits, the server sends its exit sta-tus to the client, and the client acknowledges themessage and closes the connection.More information about the protocol can be foundin [13].3.1 X11 and TCP/IP ForwardingSSH can automatically forward the connection to theuser's X server over the secure channel. Forwardingworks by creating a proxy X server at the remote ma-chine by allocating the next available TCP/IP portnumber above 6001 (these correspond to X displaynumbers so that the port corresponding to display nis 6000+n). The SSH server then listens for connec-tions on this port, forwards the connection requestand any data over the secure channel, and makes aconnection to the real X server from the SSH client.The DISPLAY variable is automatically set to pointto the proper value. Note that forwardings can bechained, permitting safe use of X applications overan arbitrary chain of SSH connections.



www.manaraa.com

SSH also automatically stores Xauthority data [8]on the server. In fact, the client generates a ran-domMIT-MAGIC-COOKIE-1 authentication cookie,and sends this cookie to the server, which stores it in.Xauthority. When a connection is made, the clientveri�es that the authority data matches the generatedrandom data, and replaces it with the real data. Themotivation for sending a fake cookie is that old cook-ies left at the server are useless after logout (manyusers keep the same terminal open for months at atime, and may brie
y log into dozens of machinesduring that time; it is important to not leave thecookies lying around in all of these machines).TCP/IP forwarding works similarly: the server lis-tens for a socket on the desired port, forwards therequest and data over the secure channel, and makesthe connection to the speci�ed target port from theother side. There is no authentication for forwardedTCP/IP connections.3.2 The Authentication AgentSSH supports using an authentication agent. Theagent is a program that runs in the user's local ma-chine (or, in future, on a smartcard connected to it).The agent holds the user's private RSA keys. It nevergives out the private keys, but accepts authenticationrequests and gives back suitable answers.In the Unix environment, the agent communicateswith SSH using an open �le handle that is inher-ited by all children of the agent process (the agentis started as a parent of the user's shell). Other userscannot get access to the agent, and even for root itis fairly di�cult to send requests to a �le descriptorheld by some process. Di�erent mechanisms are usedon other operating systems.SSH can forward the connection to the agent to an-other process running on the server machine (such asanother SSH connection). In this way, it is possibleto go through an arbitrarily long chain of machines,located anywhere around the world, without the au-thentication keys ever leaving the agent.4 Cryptographic MethodsUsed in SSHSSH attempts to provide strong security withoutmaking normal use any more di�cult than necessary.Its security relies on cryptographic methods.SSH uses RSA [6, 9] for host authentication anduser authentication. Host keys and user authentica-tion keys are normally 1024 bits.

The server key that changes every hour is 768 bitsby default. It is used to protect intercepted historicalsessions from being decrypted if the host key is latercompromised. The server key is never saved on disk.Key exchange is performed by encrypting the 256-bit session key twice using RSA. It is padded withnon-zero random bytes before each encryption (ac-cording to PKCS#1 [5]). Server host authenticationhappens implicitly with the key exchange (the ideais that only the holder of the valid private key candecrypt the session key, and receipt of the encryptedcon�rmation tells the client that the session key wassuccessfully decrypted).Client host authentication and RSA user authenti-cation are done using a challenge-response exchange,where the response is MD5 of the decrypted challengeplus data that binds the result to a speci�c session(host key and anti-spoo�ng cookie).The key exchange transfers 256 bits of keying datato the server. Di�erent encryption methods use vary-ing amounts of the key: IDEA-CFB uses 128 bits,3DES-CBC 168 bits, RC4-equivalent 128 bits per di-rection, and DES-CBC 56 bits. The reasons for usingIDEA in CFB mode is mainly historical; the new pro-tocol (Section 5) will use IDEA-CBC instead.Transmitted data is currently protected againstmodi�cation by computing a CRC32 of all packetdata (including random padding) before encryption.The checksum and all packet data are encrypted.Presumably it will be di�cult for an attacker tomodify the plaintext data so that the checksum stillmatches without breaking the encryption �rst. (Theintegrity mechanism has changed in the new protocol;see Section 5.)All random numbers used in SSH are generatedwith a cryptographically strong generator. SSH hasa pool of 8192 bits of randomness. The �rst time it isstarted, it uses several commands to gather entropyfrom the system (on Unix, '`ps laxww", \ps -al", \ls-alni /tmp/.", \w", \netstat -s", \netstat -an", and\netstat -in"). The entropy is mixed into the pool,stirring the pool frequently. The stirring involves en-crypting the pool twice using MD5 in CBC mode sothat every bit of the pool depends on every otherbit. Additional noise is obtained from various sys-tem parameters (e.g., disk I/O counts, page swappingcounts, interrupt counts, CPU usage) every time thepool is stirred, and if /dev/random is available, 128bits of noise are taken from there every few minutesand stirred into the pool.



www.manaraa.com

5 The New ProtocolThe SSH protocol is currently undergoing majorchanges. The protocol will be split to two levels, ageneric secure transport layer mechanism and a high-level SSH protocol.5.1 The New Transport Layer Proto-colThe new transport layer protocol has been designedto be 
exible, allowing negotiation of all algorithmsand parameters, simple, secure, easily veri�able, andfast. It performs a full algorithm negotiation, key ex-change, and mutual host authentication in a total of1.5 round-trip times typical, and 2.5 round-trip timesworst case. A minimal number of round-trips willbecome increasingly important in future as networkbandwidth increases but the speed of light remainsconstant. Mobile computing, in particular, will putstrong demands on the number of roundtrips; over aGSM phone, for example, a round-trip is around asecond.There have been several cryptographic improve-ments. All data exchanged during key exchange is au-thenticated. HMAC-MD5 or HMAC-SHA outside en-cryption are used for data integrity protection. IDEAis now used in CBC mode. All data, including thepacket length, is now encrypted (except the MAC).Keys are re-exchanged periodically. The protocol canalso interface with a public key infrastructure.5.2 The New SSH ProtocolThe new SSH protocol runs over the transport layerprotocol, which provides a secure channel. The SSHprotocol performs user authentication, session man-agement, and handshaking for multiple simultaneousconnections (forwarded X11 connections, etc).User authentication now permits the client to sendauthentication requests without waiting for responsesfrom the server after each request. This reducesround-trips. Additionally, whenever an authentica-tion request fails (or is insu�cient), the server willtell the client which authentication methods can con-tinue the dialog. This permits the server to guide theclient through a multi-phase authentication accord-ing to the server's per-user policy. The server canrequire multiple authentications.All authentication methods that require user inputhave been merged under one interactive authentica-tion type. This handles passwords, one-time pass-words, SecurID cards, and other such methods. Theuser basically converses with the server using a sim-

ple text-based protocol. The protocol does, however,permit dialog-based windowed implementation andlocal editing at the client.The new protocol also supports proper 
ow controlfor individual channels (e.g., forwarded X11 clients).This will prevent a runaway program from jammingthe entire connection. Details of the new protocol arestill being speci�ed as of this writing.6 The Current ImplementationSSH was �rst published on the Internet in July 1995.Since then, it has been ported to a number of plat-forms and there have been several other improve-ments.SSH currently runs on almost all Unix variants,including e.g. AIX, BSD, Convex, DGUX, HPUX,IRIX, Linux, Mach3, OSF/1, SysV, Solaris, SunOS,Ultrix, and Unicos. A commercial Windows version isavailable from Data Fellows, and a Macintosh versionis due in the fall 1996. A free OS/2 version is alsoavailable.The current Unix version supports SOCKS andFWTK based �rewalls, and permits using an arbi-trary proxy program to make the connection. In mostenvironments, it can be installed simply by./configuremakemake install7 PerformancePerformance of SSH can divided into two importantparameters: startup time and transfer rate.The startup time means the time from starting theSSH client to the moment when �rst data bytes aretransferred. The startup time is on the order of asecond on 486 or Pentium class machines connectedto an ethernet, and on the order of a few seconds forlong-distance connections.Transfer rate means the number of bytes per sec-ond that can be transmitted over the secure chan-nel. In the case of SSH, it depends on the encryptionalgorithm used. On 486-class machines, the rate is1-2 megabits/second for IDEA, 3-4 megabits/secondfor DES, and about 5 megabits per second for RC4-equivalent. The rate is almost directly proportionalto the speed of the machines; some faster machinesrun RC4-equivalent in software at speeds exceeding40 megabits per second.To summarize, the encryption speed on even slowermodern machines is su�cient to �ll an ethernet net-work. Most of the time, transfer rate is not limited



www.manaraa.com

by encryption but by the transfer rate of the network.Furthermore, on long-distance connections SSH canbe substantially faster than telnet or rlogin, dueto compression of transferred data.8 ConclusionSSH solves one of the most acute security problemson the Internet: that of securely logging from onemachine to another, and securely transferring �lesbetween machines. It does this in a way that is con-venient and completely transparent to users. At thesame time, it automates passing the X11 connection,and makes using X11 over long distance connectionssecure.SSH uses strong cryptography to achieve this goal.Its fundamental principle is that the network or anyof its services cannot be trusted. Usability in normalenvironments has been a major design concern fromthe beginning, and SSH attempts to make things aseasy for normal users as possible while still maintain-ing a su�cient level of security. For the most secu-rity conscious environments, SSH can be con�guredto never trust the network, and fail if it cannot e.g.verify the host key of the remote host.Experience has shown that the CPU overheadcaused by strong encryption is negligible. One neednot try to justify why to encrypt; doing so costs al-most nothing. However, not using strong encryp-tion in all communications can have severe conse-quences. Also, the strongest available encryptionmethods should be used, as they are no more ex-pensive than weak methods. Weak encryption willjust make transmitted data available to foreign intel-ligence agencies and criminal organizations.SSH is currently (June 1996) being used at thou-sands or tens of thousands of sites in at least 50countries around the world. There are about onethousand addresses on the mailing list, and many ofthose are redistribution aliases or newsgroup gate-ways. The SSH WWW pages are accessed about1000-2000 times every day (about once every minute).During about a period of about ten days (examinedin February 1996), accesses came from about 6000hosts (many of them WWW proxy/cache servers) in55 top-level domains. The actual number of peopleusing SSH is not known.SSH is freely available for non-commercial use.Its WWW home page, including pointers to ftpsites and commercial versions, is available athttp://www.cs.hut.fi/ssh.

References[1] J. Campbell. C Programmer's Guide to SerialCommunications, Sams, 1993.[2] Lai, X. On the Design and Security of BlockCiphers. ETH Series in Information Processing,vol. 1, Hartung-Gorre Verlag, Konstantz, 1992.[3] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,and L. Jones. SOCKS Protocol Version 5, RFC1928, 1996.[4] Mockapetris, P. Domain Names { Concepts andFacilities, RFC 1034, Internet Engineering TaskForce, 1987.[5] Public Key Cryptography Standards, #1. RSALaboratories. Available for anonymous ftp atftp.rsa.com.[6] Rivest, R., Shamir, A., and Adleman, L. M.A Method for Obtaining Digital Signatures andPublic-Key Cryptosystems. Communications ofthe ACM, vol. 21, no. 2, 1978, pp. 120-126.[7] Rivest, R. The MD5 Message Digest Algorithm,RFC 1321, Internet Engineering Task Force,1992.[8] Schei
er, R. X Window System Protocol. X Con-sortium Standard, Version 11, Release 6. Labo-ratory of Computer Science, Massachusetts In-stitute of Technology, 1994.[9] Schneier, Bruce. Applied Cryptography, 2nd edi-tion. John Wiley & Sons, 1996.[10] Stevens, W. Richard. TCP/IP Illustrated. Vol-ume 1: The Protocols. Addison-Wesley, 1994.[11] TIS Firewall Toolkit, Trusted Information Sys-tems Inc., 1993.[12] Wiener, M. J. E�cient DES Key Search. Techni-cal Report TR-244, School of Computer Science,Carleton University, 1994.[13] Yl�onen, Tatu. The SSH (Secure Shell) Re-mote Login Protocol, 1996. Available onthe Internet from the SSH Home Page athttp://www.cs.hut.�/ssh. Also included in theSSH distribution.


